Ток или поток? магнитные цепи и их основные характеристики

Магнитная цепь и ее расчет

Расчет магнитной цепи состоит из определения м. д. с. по заданному магнитному потоку, размерам цепи и ее материалам.


⌊1, ⌊2

где Н выражено в амперах на метр, а Во в теслах, или Но = 0,8 Во, если Но выразить в амперах на сантиметр, а Во в гауссах.

По закону полного тока сумма магнитных напряжений на отдельных участках равна м. д. с., то есть:

Решим пример:

Первый из трех участков из стали Э330 имеет длину ⌊1 = 56 см, сечение S1 = 36 см², второй — из литой стали ⌊2 = 17 см и S2 = 48 см², третий участок — воздушный зазор ⌊0 = 0,5*2 = 1 см, сечение S0 = 36 см².

Магнитные индукции на первом, втором и третьем участках:

По кривой намагничивания для стали Э330 индукции 1,3 Т соответствует напряженности поля 750 А/м.

Магнитное напряжение на первом участке:

Напряженность поля для второго участка:

Магнитное напряжение на втором участке:

Напряженность поля в воздушном зазоре:

Магнитное напряжение на зазоре:

Число витков обмотки витков:

голоса

Рейтинг статьи

Постоянные магниты

В измерительных приборах, электрической аппаратуре и других устройствах в качестве источников намагничивающей силы широко применяют постоянные магниты.

На рис. 9.12 схематично изображены магнитные системы магнито-электрического измерительного прибора (а) и поляризованного реле (б). Эти системы, как и большинство им подобных, имеют несколько участков: 1) из магнитно-твердого материала— постоянного магнита 1; 2) из магнитно-мягкого материала 2, служащего магнитопроводом, и воздушного зазора 3, форма и размеры которого определяются конструкцией и назначением устройства. При расчете магнитной цепи с постоянным магнитом требуется определить магнитный поток и индукцию в воздушном зазоре или по заданному потоку найти оптимальные размеры постоянного магнита (наименьшие объем и габариты).

Характеристики размагничивания постоянных магнитов

Величины остаточной магнитной индукции Вг и коэрцитивной силы Hс характеризуют материал постоянного магнита: чем они больше, тем выше его качество. Как известно, на петле гистерезиса Вг соответствует Н = 0, а при В = 0 Н = Нс. Рис. 9.12. Магнитные цепи с постоянными магнитами

Рис. 9.13. Характеристики размагничивания постоянных магнитов: 1 — АНКО-4; 2 — АНКО-2; З-АН-2; 4 — сталь с 30% СО

Промежуточные магнитные состояния определяются частью петли магнитного гистерезиса, лежащей во второй четверти, — характеристикой размагничивания (рис. 9.12). Эта характеристика используется при расчете постоянных магнитов. Согласно закону полного тока, сумма магнитных напряжений участков магнитной цепи (рис. 9.12) равна нулю, так как внешняя намагничивающая сила (ампер-витки) отсутствует: где Uм.т — магнитное напряжение постоянного магнита; — сумма магнитных напряжений всех участков магнитной цепи, включая воздушные зазоры, но без постоянного магнита.

Левая и правая части равенства (9.5) связаны с магнитной индукцией и потоком определенными зависимостями: Фт(Uм.т) — кривая размагничивания постоянного магнита (по форме повторяет кривую размагничивания материала, из которого выполнен постоянный магнит); Фм(Uм.с) — кривая намагничивания части конструкции устройства, изготовленной из магнитно-мягкого материала; Ф0(Uм0) — прямая, проходящая через начало координат и повторяющая в других масштабах зависимость

Колебательный контур

Емкость и индуктивный элемент, соединенные в цепь, образуют колебательный контур с резко выраженными частотными свойствами и будут являться резонансной системой. В качестве системы используется конденсатор, изменяя емкость которого, можно производить коррекцию частотных свойств.


Последовательный и параллельный колебательные контуры

Если измерить резонансную частоту, используя известный конденсатор, то можно определить индуктивность катушки.

Индуктивность – важнейший элемент в разных областях электротехники. Для правильного применения нужно знать все параметры используемых элементов.

Устройство, которое позволяет определить параметры катушек индуктивности, в том числе добротность, может называться L-метр или Q-метр.


Q-метр для измерения добротности

Магнитная цепь

Магнитной цепью называется устройство, отдельные участки которого выполнены из ферромагнитных материалов, по которым замыкается магнитный поток. Примерами простейших цепей могут служить магнитопроводы кольцевой катушки и электромагнита, изображенного на рис. 6.11, а. Электрические машины и трансформаторы, электромагнитные аппараты и приборы имеют обычно магнитные цепи более сложной формы.

Рис. 6.11 Магнитные цепи (а — неразветвленная, б — разветвленная)

Если магнитная цепь выполнена из одного и того же материала и имеет по всей длине одинаковое сечение, то цепь называется однородной.

Если же отдельные участки цепи изготовлены из различных ферромагнитных материалов и имеют различные длины и сечения, то цепь — неоднородная.

Магнитные цепи, так же как и электрические, бывают разветвленные (рис. 6.11,6) и неразветвленные (рис. 6.11,а).

В неразветвленных цепях магнитный поток Ф во всех сечениях имеет одно и то же значение.

Разветвленные цепи могут быть симметричными и несимметричными. Цепь, представленная на рис. 6.11,6, считается симметричной, если правая и левая части ее имеют одинаковые размеры, выполнены из одного и того же материала и если МДС I1W1 и I2W2 одинаковы. При невыполнении хотя бы одного из указанных условий цепь будет несимметричной.

Разобьем неразветвленную магнитную цепь, например, на рис 6.11, а на ряд однородных участков, каждый из которых выполнен из определенного материала и имеет одинаковое поперечное сечение S вдоль всей своей длины. Длину каждого участка L будем считать равной длине средней магнитной линии в пределах этого участка. Из сказанного выше следует, что магнитные потоки всех участков неразветвленной цепи равны, т. е.

и поле на каждом участке можно считать однородным, т. е. Ф= BS; поэтому

Где n — число участков цепи. Магнитное напряжение на любом из участков магнитной цепи

Где H — Напряженность, (измеряется в ампер на метр А/М).

B — Магнитная индукция (измеряется в теслах Тл).

L — Длинна средне силовой линии проходящей через центр поперечного сечения магнитопровода.

S — площадь поперечного сечения магнитопровода.

— Магнитная постоянная.

При заданном направлении тока в обмотке направление потока и МДС IW определяется по правилу буравчика.

Электромагниты и их применение

Вот некоторые из примеров, где они используются:

  • Моторы и генераторы. Благодаря электромагнитам стало возможным производство электродвигателей и генераторов, которые работают по принципу электромагнитной индукции. Это явление было открыто ученым Майклом Фарадеем. Он доказал, что электрический ток создает магнитноее поле. Генератор использует внешнюю силу ветра, движущейся воды или пара, вращает вал, который заставляет двигаться набор магнитов вокруг спирального провода, чтобы создать электрический ток. Таким образом, электромагниты преобразуют в электрическую другие виды энергии.
  • Практика промышленного использования. Только материалы, сделанные из железа, никеля, кобальта или их сплавов, а также некоторые природные минералы реагируют на магнитное поле. Где используют электромагниты? Одной из сфер практического применения является сортировка металлов. Поскольку упомянутые элементы используются в производстве, с помощью электромагнита эффективно сортируют железосодержащие сплавы.
  • Где применяют электромагниты? С их помощью можно также поднимать и перемещать массивные объекты, например, автомобили перед утилизацией. Они также используются в транспортировке. Поезда в Азии и Европе используют электромагниты для перевозки автомобилей. Это помогает им двигаться на феноменальных скоростях.

Советуем изучить — Как наносится гальваническое покрытие на производстве и в домашних условиях

Расчет — магнитная цепь — переменный ток

Расчет магнитной цепи переменного тока ведется с помощью двух уравнений Кирхгофа в комплексной форме методом последовательных приближений.

Расчет магнитных цепей переменного тока базируется на тех же методах, что и расчет цепей постоянного тока. Законы Ома и Кирхгофа в полной мере применимы к тем и другим цепям. Однако применительно к цепям, работающим на переменном токе, эти законы должны выражаться в комплексной форме.

При расчете магнитных цепей переменного тока кроме учета экранирующих витков и активного магнитного сопротивления стали магнитопровода может возникнуть также необходимость учета влияния потерь в стали на вихревые токи и перемагничи-вание.

При расчетах магнитных цепей переменного тока используется эти же законы, однако учитывается род тока.

При расчете магнитной цепи переменного тока необходимо учитывать коэффициент заполнения пакета сталью kc, который зависит от рода изоляции и толщины листов стали. Для листов толщиной 0 5 и 0 35 мм kc соответственно равен 0 95 и 0 9, если листы изолированы специальным лаком, или 0 9 и 0 85, если они оклеены бумагой.

При расчете магнитных цепей переменного тока принято синусоидальное изменение напряжения, тока и потока. Если же магнитная цепь работает при сравнительно больших индукциях ( за коленом кривой намагничивания), то расчет ведется по первой гармонике.

Магнитная цепь переменного тока.

Исходные соотношения для расчета магнитных цепей переменного тока остаются теми же, что и для расчета магнитных цепей постоянного тока.

Для выяснении особенностей расчета магнитной цепи переменного тока с учетом потоков рассеяния используем схематическое изображение магнитной цепи и распределение магнитного потока, показанное на рис. 1.22, а. Рассмотрим задачу нахождения необходимой МДС обмотки ( F) по заданному значению магнитного потока ФТ 6 в рабочем воздушном зазоре.

Последнее обстоятельство приводит к целесообразности при расчете магнитных цепей переменного тока использовать символический метод, основанный на изображении векторных величин комплексными числами и операциях с последними.

В этом параграфе приведены задачи, характеризующие особенности расчета магнитных цепей переменного тока, связанные с наличием экранирующих витков и потерь в стали магнитопровода. Эти задачи дают возможность проанализировать, как влияет величина рабочего зазора в магнитной цепи ( замкнутое состояние при притянутом якоре и конечном рабочем зазоре и разомкнутое при начальном зазоре) на основные соотношения при расчете н.с. обмотки, магнитного потока и др. Рассмотрены задачи на построение векторной диаграммы и рассчитана тяговая характеристика электромагнита переменного тока.

Расчет магнитной цепи постоянного тока является частным случаем расчета магнитной цепи переменного тока, он менее сложен и в большей степени представлен в литературе

В дальнейшем основное внимание будет уделено расчету цепей переменного тока.
 . Понятие комплексной проницаемости было введено профессором Московского университета В

К. Аркадьевым в 1913 г. и получило широкое применение при расчете магнитных цепей переменного тока.

Понятие комплексной проницаемости было введено профессором Московского университета В. К. Аркадьевым в 1913 г. и получило широкое применение при расчете магнитных цепей переменного тока.

В книге обобщены результаты многолетней научно-исследовательской работы автора. При изложении материала автор сознательно уделил больше внимания вопросам расчета магнитных цепей переменного тока, которые, насколько известно, до сих пор в литературе освещены слабо. Однако по расчету магнитных цепей постоянного тока в книге изложено материала достаточно, для того чтобы воспользоваться им в практике проектирования.

Применяя аналогичную методику, можно рассчитывать и магнитные цепи переменного тока. Так же как и в магнитных цепях постоянного тока, в основе расчета магнитной цепи переменного тока лежит заданная зависимость между индукцией и напряженностью магнитного поля. Однако теперь эти величины характеризуются не только модулем, но и фазой.

Как сделать простой электромагнит – пошаговая инструкция со схемами

Такое устройство удобно тем, что его работой легко управлять при помощи эл/тока – менять полюса, силу притяжения. В некоторых вопросах оно становится поистине незаменимым, а часто используется как конструктивный элемент различных самоделок. Своими руками сделать простой электромагнит несложно, тем более что практически все необходимое можно найти в каждом доме.

Что понадобится

  • Любой подходящий образец из железа (оно хорошо магнитится). Это будет сердечник электромагнита.
  • Проволока – медная, обязательно с изоляцией, чтобы предотвратить прямой контакт двух металлов. Для самодельного эл/магнита рекомендуемое сечение – 0,5 (но не более 1,0).
  • Источник постоянного тока – батарейка, АКБ, БП.

Дополнительно:

  • Соединительные провода для подключения электромагнита.
  • Паяльник или изолента для фиксации контактов.

Это общая рекомендация, так как электромагнит изготавливается с определенной целью. Исходя из этого, и подбираются составные части схемы.

А если он делается в домашних условиях, то какого-то стандарта и быть не может – подойдет все, что есть под рукой.

Например, применительно к первому пункту в качестве сердечника нередко используют гвоздь, дужку замка, отрезок железного стержня – выбор вариантов огромный.

Обмотка

Медный провод аккуратно, виток за витком, накручивается на сердечник. При такой скрупулезности КПД электромагнита будет максимально возможным.

После первого «прохода» по железному образцу проволока укладывается вторым слоем, иногда и третьим. Это зависит от того, какая мощность устройства требуется.

Но направление намотки должно быть неизменным, иначе произойдет «разбалансировка» магнитного поля, и электромагнит вряд ли что-то сможет притянуть к себе.

https://youtube.com/watch?v=RwdUzWulkcs

Чтобы понять смысл протекающих процессов, достаточно вспомнить уроки физики из курса средней школы – движущиеся электроны, создаваемое ими ЭМП, направление его вращения.

После окончания намотки проволока обрезается так, чтобы выводы было удобно подключить к источнику питания. Если это батарейка – то напрямую. При использовании БП, аккумулятора или иного прибора понадобятся соединительные провода.

Что учесть

С количеством слоев есть определенные сложности.

  • С увеличением витков повышается реактивное сопротивление. Значит, сила тока начнет снижаться, а притяжение станет более слабым.
  • С другой стороны, повышение номинала тока вызовет нагрев обмотки.

Подробно принцип действия работы электромагнита описан в следующем видео:

Подключение

  • Зачистка выводов «медяшки». Проволока изначально покрыта несколькими слоями лака (в зависимости от марки), а он, как известно – изолятор.
  • Спаивание медного и соединительного проводов. Хотя это и непринципиально – можно сделать скрутку, изолировав ее трубкой ПВХ или клейкой лентой.
  • Фиксация вторых концов проводов на зажимах. Например, типа «крокодил». Такие съемные контакты позволят легко менять полюса электромагнита, если это понадобится в процессе его применения.

Полезные советы

Для изготовления мощного электромагнита домашние умельцы нередко используют катушку от МП (магнитного пускателя), реле, контакторов. Они есть и на 220, и на 380 В.

Железный сердечник подобрать по ее внутреннему сечению несложно. Для удобства управления в схему нужно включить реостат (переменное сопротивление). Соответственно, такой эл/магнит подключается уже к розетке.

Сила притяжения регулируется изменением R цепи.

Можно повысить мощность электромагнита за счет увеличения сечения сердечника. Но только до определенных пределов. И здесь придется экспериментировать.

Прежде чем делать эл/магнит, необходимо убедиться, что выбранный образец железа для этого подходит. Проверка достаточно простая. Берется обычный магнитик; в доме много чего есть на таких «присосках». Если он притянет подобранную для сердечника деталь, можно использовать. При отрицательном или «слабом» результате лучше поискать другой образец.

Сделать электромагнит достаточно просто. Все остальное зависит от терпения и сообразительности мастера. Возможно, чтобы получить то, что нужно, придется поэкспериментировать – с напряжением питания, сечением проволоки и так далее. Любая самоделка требует не только творческого подхода, но и времени. Если его не пожалеть, то отличный результат обеспечен.

Как рассчитать электромагнит постоянного тока

Выбор провода.

В первую очередь следует ориентировочно выбрать диаметр провода марки ПЭЛ или какой-либо другой марки. Так как расчет несложный, его можно выполнить для проводов различного сечения и выбрать тот, который дает наилучшие результаты по напряженности магнитного поля при минимальной мощности потребляемой электромагнитом.

Выбрав диаметр провода, необходимо вычислить для него площадь поперечного сечения 5пр и допустимую для него силу тока/, исходя из минимального ее значения плотности, равной 2 а /мм 2 ,

Для проводов марки ПЭЛ эти данные приведены в справочнике .

Определение длины провода в обмотке электромагнита.

Общая длина провода lпр будет равна

где U — напряжение источника питания, в;

R — сопротивление обмотки, ом;

Snp — площадь поперечного сечения провода, м 2 ;

ρ — удельное сопротивление меди, равное 1,7*10 -8 ом*м 2 /м;

I — допустимая сила тока, а.

Вычисление глубины выемки в сердечнике и расчет количества слоев (рядов) провода, умещающегося в ней.

Зная глубину а выемки в сердечнике электромагнита и отняв от нее толщину изоляции δи, находят активную глубину выемки

Эта величина позволяет вычислить количество слоев провода, умещающегося в этом пространстве. Так как каждый слой провода должен быть покрыт трансформаторной или конденсаторной бумагой слоем δми = 0,02 мм

, то толщина каждого слоя обмотки будет составлять

Количество слоев nсл провода можно получить, разделив активную глубину аак выемки сердечника на толщину слоя, т. е.

Определение длины среднего витка обмотки.

Для нахождение общего числа витков обмотки электромагнита требуется знать длину среднего витка. Для этого необходимо предварительно вычислить радиусы наименьшего и наибольшего витков обмотки. Радиус наименьшего витка rним, очевидно, будет равен сумме

Расчет силы тока по мощности, напряжению, сопротивлению

Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК! Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Приложения

  • В сердечниках некоторых трансформаторов могут быть созданы воздушные зазоры, чтобы уменьшить воздействие насыщенность. Это увеличивает сопротивление магнитной цепи и позволяет ей хранить больше энергия до насыщения сердечника. Этот эффект используется в обратноходовые трансформаторы видеодисплеев с электронно-лучевой трубкой и в некоторых типах импульсный источник питания.
  • Изменение сопротивления — это принцип, лежащий в основе реактивный двигатель (или генератор переменного сопротивления) и Генератор Alexanderson.
  • Мультимедиа музыкальные колонки обычно имеют магнитную защиту, чтобы уменьшить магнитные помехи, вызываемые телевизоры и другие ЭЛТ. Магнит динамика покрыт таким материалом, как мягкое железо для минимизации паразитного магнитного поля.

Сопротивление также может применяться к переменному сопротивлению (магнитному) пикапы.

Архивы

АрхивыВыберите месяц Февраль 2022  (2) Январь 2022  (3) Декабрь 2021  (4) Ноябрь 2021  (2) Октябрь 2021  (6) Апрель 2021  (1) Март 2021  (3) Февраль 2021  (2) Январь 2021  (1) Декабрь 2020  (1) Ноябрь 2020  (1) Октябрь 2020  (1) Сентябрь 2020  (2) Июль 2020  (2) Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (2) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

9.1.1. Элементы магнитной цепи

Магнитной цепью (магнитопроводом) называется совокупность различных ферромагнитных и неферромагнитных частей электротехнических устройств для создания магнитных полей нужных конфигурации и интенсивности. В зависимости от принципа действия электротехнического устройства магнитное поле может возбуждаться либо постоянным магнитом, либо катушкой с током, расположенной в той или иной части магнитной цепи.

К простейшим магнитным цепям относится тороид из однородного ферромагнитного материала (рис. 9.1). Такие магнитопроводы применяются в многообмоточных трансформаторах, магнитных усилителях, в элементах ЭВМ и других электротехнических устройствах.

На рис. 9.2 показана более сложная магнитная цепь электромеханического устройства, подвижная часть которого втягивается в электромагнит при постоянном (или переменном) токе в катушке. Сила притяжения зависит от положения подвижной части магнитопровода.

На рис. 9.3 изображена магнитная цепь, в которой магнитное поле возбуждается постоянным магнитом. Если подвижная катушка, расположенная на ферромагнитном цилиндре, включена в цепь постоянного тока, то на нее действует вращающий момент. Поворот катушки с током практически не влияет на магнитное поле магнитной цепи. Такая магнитная цепь есть, например, в измерительных приборах магнитоэлектрической системы.

Рассмотренные магнитные цепи, как и другие возможные конструкции, можно разделить на неразветвленные магнитные цепи (рис. 9.1 и 9.3), в которых магнитный поток в любом сечении цепи одинаков, и разветвленные магнитные цепи (рис. 9.2), в которых магнитные потоки в различных сечениях цепи различны. В общем случае разветвленные магнитные цепи могут быть сложной конфигурации, например в электрических двигателях, генераторах и других устройствах.

В большинстве случаев магнитную цепь следует считать нелинейной, и лишь при определенных допущениях и определенных режимах работы магнитную цепь можно считать линейной.

Кто открыл явление электромагнитной индукции?

Электромагнитная индукция, на принципе работы которой основаны многие современные приборы, была открыта в начале 30-х годов XIX века. Открытие явления электромагнитной индукции принято приписывать Майклу Фарадею (дата открытия — 29 августа 1831 года). Ученый основывался на результатах опытов датского физика и химика Ханса Эрстеда, который обнаружил, что проводник, по которому течет электрический ток, создает магнитное поле вокруг себя, то есть начинает проявлять магнитные свойства.

Фарадей, в свою очередь, открыл противоположное обнаруженному Эрстедом явление. Он заметил, что изменяющееся магнитное поле, которое можно создать, меняя параметры электрического тока в проводнике, приводит к возникновению разности потенциалов на концах какого-либо проводника тока. Если эти концы соединить, например, через электрическую лампу, то по такой цепи потечет электрический ток.

В итоге Фарадей открыл физический процесс, в результате которого в проводнике появляется электрический ток из-за изменения магнитного поля, в чем и заключается явление электромагнитной индукции

При этом для образования индуцированного тока не важно, что движется: магнитное поле или сам проводник. Это можно легко показать, если провести соответствующий опыт по явлению электромагнитной индукции. Так, расположив магнит внутри металлической спирали, начинаем перемещать его

Если соединить концы спирали через какой-либо индикатор электрического тока в цепь, то можно увидеть появление тока. Теперь следует оставить магнит в покое и перемещать спираль вверх и вниз относительно магнита. Индикатор также покажет существование тока в цепи

Так, расположив магнит внутри металлической спирали, начинаем перемещать его. Если соединить концы спирали через какой-либо индикатор электрического тока в цепь, то можно увидеть появление тока. Теперь следует оставить магнит в покое и перемещать спираль вверх и вниз относительно магнита. Индикатор также покажет существование тока в цепи.

Закон Ома: кто придумал, определение

Закон Ома — это основной закон электродинамики, который выводит взаимосвязь между ключевыми понятиями электрической цепи: силой тока, напряжением и сопротивлением.

Данную взаимозависимость выявил немецкий физик Георг Симон Ом в 1826 году. Несмотря на то, что этот закон является истинным законом природы, точность которого была многократно проверена и доказана позже, публикация работы Ома в 1827 году прошла незамеченной для научной общественности. И лишь в 1830-х гг., когда французский физик Пулье пришел к тем же самым выводам, что и Ом, работа немецкого ученого была оценена по достоинству.

Установление закономерностей между основными параметрами электроцепи имеет огромное значение для науки. Ведь оно позволило количественно измерить свойства электрического тока.

Формулировки и основные формулы

Закон Георга Ома формулируется так: сила тока в проводнике прямо пропорциональна напряжению в проводнике и обратно пропорциональна сопротивлению этого проводника.

Пояснения к закону:

  1. Чем выше напряжение в проводнике, тем выше будет и сила тока в этом проводнике.
  2. Чем выше сопротивление проводника, тем меньше будет сила тока в нем.

Обозначение основных параметров, характеризующих электроцепь, известны всем с уроков физики в школе:

  • I — сила электротока;
  • U — напряжение;
  • R — сопротивление.

Конструктивные особенности

Наибольшая индуктивность получается, когда сердечник замкнут. Такой магнитопровод может быть тороидальным если он имеет вид бублика (тороида). Они используются для получения минимальной индуктивности рассеяния, то есть магнитного поля находящегося вне магнитопровода. Но поскольку они сложны в изготовлении, чаще применяются магнитопроводы из двух зеркально — симметричных частей вставляемых внутрь цилиндрической катушки, удобной в изготовлении.

В материале магнитопровода можно условно выделить множество короткозамкнутых обмоток. Переменный ток в обмотке вызывает в них токи потерь. Чтобы потери уменьшились, он делается многослойным с надёжной изоляцией слоёв друг от друга. Обычно для этого используются пластины необходимой формы. Из них изготовлены в большинстве своём все трансформаторы и дроссели, используемые в сетях централизованного электроснабжения. Реже используется конструкция в виде ленты в рулоне. Её сложнее состыковать с остальными деталями магнитопровода, если таковые имеются.

Конструктивно сердечники бывают стержневыми и броневыми. Они широко используются в трансформаторах и дросселях как показано на изображениях ниже:

Металлические сердечники из сплавов на основе железа используются во всех электрических машинах, работающих на напряжении с частотой 50 Гц. На изображении показан магнитопровод электродвигателя. Пазы предназначены для расположения витков обмотки.

Увеличение частоты заметно уменьшает массу и габариты сердечников. Очень наглядным примером этого являются цокольные люминесцентные лампы. Но в высокочастотных устройствах приходится применять другие материалы для изготовления магнитопроводов. Даже самые тонкие пластины из сплава на основе железа нагреваются на высоких частотах неприемлемо сильно.

С увеличением частоты более 50 Гц для сердечников применяется сплав пермаллой на основе никеля, а на частотах более 1 кГц – сердечники из спекаемого порошка. Сердечники из пермаллоя конструктивно такие же, как и те, что изготовлены на основе железа – стержневые и броневые, только поменьше размером при равных мощностях трансформаторов и электродвигателей. А вот сердечники из порошка весьма разнообразны по своему составу. Они имеют небольшие размеры и технологичны в изготовлении не только для стержневых и броневых конструкций, но и для чашек, как видно на изображении слева.

Эти сердечники применяются в импульсных источниках электропитания, электронных балластах люминесцентных ламп и в различных радиоэлектронных устройствах в колебательных контурах, трансформаторах и фильтрах. В качестве материала сердечника наиболее широко используются различные марки ферритов.

Советуем изучить — Статическое и астатическое регулирование

Словом, современные материалы позволяют изготавливать магнитопроводы для решения большинства технических задач.

Закон Ома для однородного и неоднородного участка цепи

Закон Ома для однородного участка электроцепи представляет собой классическое выражение зависимости силы от напряжения и сопротивления:

В этом случае основной характеристикой проводника является сопротивление. От внешнего вида проводника зависит, как выглядит его кристаллическая решетка и какое количество атомов примесей содержит. От проводника зависит поведение электронов, которые могут ускоряться или замедляться.

Поэтому \(R\) зависит от вида проводника, точнее, от его сечения, длины и материала и определяется по формуле:

где \(p\) — удельное сопротивление, \( l\) — это длина проводника, а \(S\) — площадь его сечения.

Под неоднородным участком цепи постоянного тока подразумевается такой промежуток цепи, на который помимо электрических зарядов воздействуют другие силы.

Как можно было убедиться, закон, открытый Георгом Омом, прост только на первый взгляд. Разобраться во всех тонкостях самостоятельно под силу далеко не каждому. Если столкнулись с трудностями в учебе и сложными для понимания темами, обращайтесь за помощью к образовательному ресурсу Феникс.Хелп. Квалифицированные эксперты помогут сдать в срок самую сложную работу.

Источник



Разница с электрическим сопротивлением

Уравнение магнитного сопротивления ℜ = ℓc / мкАc похож на R = L / σA на электрическое сопротивление. В последнем случае σ представляет собой проводимость материала, L — длину провода, а A — площадь его поперечного сечения.

Эти три величины: σ, L и A постоянны. Однако проницаемость среды μ, в общем, оно непостоянно, поэтому магнитное сопротивление цепи тоже непостоянно, в отличие от его электрического аналога.

Если происходит изменение среды, например, при переходе от воздуха к железу или наоборот, происходит изменение проницаемости с последующим изменением сопротивления. А также магнитные материалы проходят через циклы гистерезиса.

Это означает, что приложение внешнего поля заставляет материал сохранять часть магнетизма даже после того, как поле снято.

По этой причине каждый раз, когда рассчитывается магнитное сопротивление, необходимо тщательно определять, где материал находится в цикле, и, таким образом, знать его намагниченность.

Просадка напряжения

Итак, знакомьтесь, автомобильный аккумулятор!

Для дальнейшего его использования, припаяем к нему два провода: красный на плюс, черный на минус

Наш подопечный готов к бою.

Теперь берем автомобильную лампочку-галогенку и тоже припаяем к ней два проводка с крокодилами. Я припаялся к клеммам на “ближний” свет.

Первым делом давайте замеряем напряжение на клеммах аккумулятора

12,09 вольт. Вполне нормально, так как наш аккумулятор выдает именно 12 вольт. Забегу чуток вперед и скажу, что сейчас мы замерили именно ЭДС.

Подключаем галогенную лампу к аккумулятору и снова замеряем напряжение:

Видели да? Напряжение на клеммах аккумулятора просело до 11,79 Вольт!

А давайте замеряем, сколько потребляет тока наша лампа в Амперах. Для этого составляем вот такую схемку:

Желтый мультиметр у нас будет замерять напряжение, а красный мультиметр – силу тока. Как замерять с помощью мультиметра силу тока и напряжение, можно прочитать в этой статье.

Смотрим на показания приборов:

Как мы видим, наша лампа потребляет 4,35 Ампер. Напряжение просело до 11,79 Вольт.

Давайте вместо галогенной лампы поставим простую лампочку накаливания на 12 Вольт от мотоцикла

Смотрим показания:

Лампочка потребляет силу тока в 0,69 Ампер. Напряжение просело до 12 Вольт ровно.

Какие выводы можно сделать? Чем больше нагрузка потребляет силу тока, тем больше просаживается напряжение на аккумуляторе.

Заключение

Во-первых, спасибо, что дочитали статью! Один из способов поддержать меня как автора — подписаться на мой паблик Вконтакте, где иногда выходят «локальные статьи».

Во-вторых, вернемся к началу статьи. Там я задался целью показать, почему физика удивительна. Не хочу быть многословным, поэтому просто попрошу вспомнить все то, что было описано выше. Мы оперировали моделями, которые относятся к разделу физики электричества и перенесли их на физику магнетизма. Наверняка, вы замечали, насколько часто встречаются элементы механики в иных разделах. Это по истине удивительно! Однако главное не поработиться иллюзией, что в мире все законы нам предельно известны…

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Домашняя баня
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: