Как самостоятельно собрать диодный мост: схема

Выпрямление электроэнергии

До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась. Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением. Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.

Выпрямитель на одном диоде

Диод проводит ток только в одном направлении, именно поэтому его и называют полупроводниковым прибором. Если к катоду устройства подключить плюс источника напряжения, а к аноду — минус, диод будет вести себя как обычный проводник. Если полярность изменить, то прибор закроется и превратится в диэлектрик. Для ответа на вопрос о том, что это даёт, придется собрать простейшую схему и снова вооружиться осциллографом.

На схеме изображена работа полупроводникового диода в цепи переменного тока. Осциллограмма слева показывает картину на выходе трансформатора — обычный переменный ток. После диода всё существенно меняется — на графике исчезает отрицательная полуволна переменного напряжения. Ток еще не стал постоянным, но он уже не переменный — движения электрического заряда в обратном направлении нет. Такой род тока принято называть пульсирующим. Им еще нельзя питать электронику, но изменения налицо. Остаётся сгладить пики импульсов. Это делают с помощью конденсаторов.

На схеме представлен однополупериодный выпрямитель со сглаживающим конденсатором. Во время положительного импульса напряжение не только питает нагрузку, но и одновременно заряжает конденсатор. Когда импульс заканчивается, конденсатор отдает накопленную энергию, сглаживая скачки напряжения.

Двухполупериодный прибор

Несмотря на значительные успехи, достигнутые в преобразовании переменного тока в постоянный предыдущим экспериментом, результат ещё далек от идеала. Дело в том, что частота переменного тока довольно низкая (50 Гц), а навешивание сглаживающих конденсаторов имеет свои ограничения. Для того чтобы существенно улучшить форму выходного сигнала, нужно увеличить частоту.

Однако в розетках она строго фиксирована и не зависит от внешних факторов. Отрицательная полуволна напряжения срезается диодом. Поменять её полярность совсем несложно — достаточно лишь добавить несколько диодов, собрав мостовую схему. На рисунке представлен двухполупериодный выпрямитель на четырёх диодах, объясняющий то, как работает диодный мост:

При появлении положительной полуволны диоды VD2, VD3 окажутся включенными в прямом направлении и будут открыты. VD1, VD2 — закрыты. Полуволна свободно проходит к выходу выпрямителя. Когда напряжение сменит полярность, пары диодов поменяются местами — VD1 и VD4 откроются, VD2 и VD3 закроются. Отрицательная полуволна тоже пройдет к выходу, но поменяет полярность. В результате получится все то же импульсное однополярное напряжение, но частота его увеличится вдвое. Останется добавить сглаживающий конденсатор и посмотреть, что получится.

Двухполупериодный выпрямитель со сглаживающим конденсатором на изображении показывает, что поставленная задача решена: переменное напряжение преобразовано в постоянное. Конечно, постоянство неидеально — имеются пульсации, однако с ними можно бороться с помощью фильтров. К тому же любая электроника допускает ту или иную величину пульсаций.

Такая схема, состоящая из четырех диодов, стала классической и получила название диодного или выпрямительного моста. Существует отдельная категория электронных приборов — выпрямительные мосты. Они состоят из четырех диодов, соединенных между собой соответствующим образом. В качестве примера можно посмотреть на выпрямительный мост КЦ402Г и его электрическую схему.

Читать также: Как правильно обезжирить поверхность

История изобретения

В 1873 году английский учёный Фредерик Гутри разработал принцип работы вакуумных ламповых диодов с прямым накалом. Уже через год в Германии физик Карл Фердинанд Браун предположил похожие свойства в твердотельных материалах и изобрел точечный выпрямитель. В начале 1904 года Джон Флеминг создал первый полноценный ламповый диод. В качестве материала для его изготовления он использовал оксид меди. Диоды начали широко использоваться в радиочастотных детекторах. Изучение полупроводников привело к тому, что в 1906 году Гринлиф Виттер Пиккард изобрел кристаллический детектор.

В середине 30-х годов XX века основные исследования физиков были направлены на изучение явлений, проходящих на границе контакта металл-полупроводник. Их результатом стало получение слитка кремния, обладающего двумя типами проводимости. Изучая его, в 1939 году американский учёный Рассел Ол открыл явление, названное позже p-n переходом. Он установил, что в зависимости от примесей, существующих на границе соприкосновения двух полупроводников, изменяется приводимость. В начале 50-х годов инженеры компании Bell Telephone Labs разработали плоскостные диоды, а уже через пять лет в СССР появились диоды на основе германия с переходом менее 3 см.

Схема и принцип работы диодного моста

Схема диодного моста Рис. Наибольший рабочий ток выпрямления.
С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Ответ изображён на следующем рисунке. Определили, еще ничего не зная ни о свободных электронах, ни о дырках.
Результат — более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора. В случае выхода из строя одного диода в составе монолитной сборки менять придется всю ее целиком несмотря на то, что три оставшихся элемента могут быть исправными.
Пульсации сглаживаются, а напряжение становится близким к постоянному. Схема подключения устройства На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами.
Следуя из названия, собран мост из 4 или 6 диодов. Работая с обеими полуволнами переменного напряжения, диодный мост выгодно отличается от однополупериодных выпрямителей.

Принцип работы диодного моста

Металлы характеризуется тем, что электроны в их кристаллической решетке почти не держатся, вылетают и болтаются между атомами кристалла по любому поводу, самая небольшая температура, заставляющая ядра атомов на своих местах слегка вибрировать, вышибает электроны напрочь и массово. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром.

В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Данную пульсацию можно немного уменьшить с помощью параллельно включенного конденсатора к выходу диодного моста.

Его величина возрастает и зависит только сопротивления p- и n- области. Устройство выпрямителя и схема подключения На сегодняшний день не придумано ничего лучшего для полноценного выпрямления напряжения, чем обычный диодный мост.
ЧТО ТАКОЕ ДИОДНЫЙ МОСТ

Обозначение и маркировка

В литературе, различных спецификациях и на схемах устройство подписывается латинскими символами VDS, после которых ставится арабская цифра, обозначающая порядковый номер. В иностранной литературе можно также встретить обозначение BDS. Стандарта для маркировки мостов не существует. Каждый производитель обозначает свою продукцию, как хочет, согласно своей системе.

Если внимательно изучить различные обозначения, то можно проследить тенденцию в маркировке, нанесённой на корпус прибора. На ней почти всегда присутствуют данные о его основных характеристиках. То есть указывается максимальный ток или рабочее напряжение. Например, DB151S — первые две цифры обозначают ток 1,5 А, а вторая напряжение согласно таблице, в этом случае 50 В.

Отечественные изделия классифицируются по-другому. Сам мост обозначается буквой «Ц», стоящее за ней число обозначает материал, а последующие цифры номер разработки. Например, популярный мостик у радиолюбителей выдерживающий обратное напряжение до 400 В, маркируется как КЦ407А.

Резюме

Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

Диодный мост используется почти во всей радиоаппаратуре, которая “кушает” напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен  для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4. Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше. Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга

Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Диодный мост генератора

Диодный мост генератора в автомобилях выпрямляет переменное напряжение, которое поступает от обмоток статора генератора. То есть грубо говоря, без диодного моста получается трехфазный мини-генератор.

Диодный мост генератора ВАЗ 2110

В этой статье будем рассматривать диодный мост от генератора ВАЗ 2110.

Он сделан по схеме Ларионова с некоторым дополнением в виде 3 дополнительных диодов.

Проверка с помощью лампы накаливания

Этот способ считается самым простым, и все его могут применить, так как под рукой всегда найдется аккумулятор и лампа на 12 В. Иначе откуда у вас автомобильный генератор?)

Предварительно лучше запаять или прикрепить к лампе два провода, чтобы было проще производить проверку. Итак, собираем наш прибор для проверки диодного моста генератора из лампы и аккумулятора вот по такой схеме.

Далее, все что нам надо сделать — это просто проверить каждый диод. Итак, вспоминаем, что диод в одном направлении проводит электрический ток, а в другом нет. Получается, нам надо в каждый диод «тыкнуться» два раза, чтобы узнать исправен ли он. Так мы и сделаем.

Вместо аккумулятора у меня будет лабораторный блок питания на 12 Вольт, что в принципе не играет никакой роли. Мой «прибор» для проверки диодов выглядит вот так.

Красные крокодил — это плюс от аккумулятора, в моем случае — от блока питания, а черный — это минус.

Поехали! У нас имеется 9 диодов. Начнем, пожалуй, с больших диодов-таблеток, которые вмонтированы в металлические пластины. Цепляюсь одним выводом-крокодилом к пластине, на которой вмонтирован один конец диода

а другим выводом, который идет от лампы накаливания касаюсь другого вывода диода и вуаля! Лампа зажглась!

Теперь надо обязательно поменять выводы наших проводов с самопального прибора местами и снова повторить это действие.

Как вы видите, наша лампа не горит, и это замечательно! Потому что мы сейчас только что убедились в том, что наш диод абсолютно здоров и готов выполнять свою задачу на 100%.

Таким же образом проверяем все диоды таблетки.

Маленькие черные диоды проверяются точь-в-точь таким же способом.

Меняем выводы и убеждаемся, что диод рабочий.

Правила:

1) Если лампочка не горит ни так ни сяк, значит диод неисправен.

2) Если лампочка горит и так и сяк, значит диод тоже неисправен.

3) Если лампочка горит, а при смене щупов не горит, значит диод исправен.

Проверка с помощью мультиметра

Не у всех есть такой замечательный прибор, как мультиметр, но он должен быть у каждого уважающего себя электрика и электронщика.

В каждом хорошем мультиметре есть функция прозвонки диодов. Как я уже говорил, наш автомобильный диодный мост будет исправен, если все его диоды будут исправны.

Берем в руки мультиметр и ставим его в режим прозвонки диодов.

И начинаем проверять все диоды друг за другом на исправность. В одном направлении диод должен показать значение от 0,4 и до 0,7 Вольт. В нашем случае 0,552 Вольта, что вполне приемлемо.

Далее меняем щупы местами и видим, что мультиметр показывает нам OL, что говорит нам о том, что превышен предел измерения. Значит, диод жив и здоров).

Таким же образом проверяем все оставшиеся диоды.

Вынос диодного мостика генератора

Частый ремонт узла выпрямителя неизбежен при экстремальной эксплуатации внедорожника – преодоление рек, «грязевые ванны» авто на рыбалке и охоте. Поэтому данная категория автовладельцев решает проблему кардинально, вынося выпрямитель заодно с реле регулятором напряжения в отдельный узел, повыше под капотом.

Например, на нижнем фото показан диодный мост автомобильного генератора внутри корпуса фильтра воздушного.

Основными нюансами тюнинга в данном случае являются:

  • корпус фильтра предохраняет электронику от влаги;
  • полностью решена проблема охлаждения;
  • повышена ремонтопригодность узла, не нужно разбирать генератор;
  • усилены клеммы, использован провод большего сечения;
  • термоусадочный материал не подвергался высокотемпературной обработке, поэтому жгут внутри него сохранил мягкость;
  • использован мост на 8 диодах 90 А.

При необходимости выносной узел можно смонтировать внутри салона, например, за пассажирским сиденьем.

Для чего нужен диодный мост

Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.

Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока.

Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц. Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем.

Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье. Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.

При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:

  • Обратное напряжение диодов;
  • Обратный ток диодов;
  • Длительно допустимый ток;
  • Максимальная рабочая температура;
  • Рабочая частота (актуально для высокочастотных приборов).

Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык.

Это обезопасит ваше устройство. Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.

Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.

Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны.

В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки. На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры.

Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах. Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.

Преимущества и недостатки

Кроме диодного моста существуют и другие способы преобразования переменного в постоянный ток. В сравнении с однополупериодным, двухполупериодное выпрямление обладает рядом преимуществ:

  • И отрицательная, и положительная полуволна синусоиды преобразуются в выходное напряжение, поэтому вся мощность трансформатора используется в наиболее оптимальной степени.
  • За счет большей частоты пульсации получаемое от диодного выпрямителя напряжение куда проще сглаживать при помощи фильтров.
  • Использование электроэнергии под нагрузкой уменьшает потери мощности на перемагничивание сердечника, возникающее из-за процессов взаимоиндукции в обмотках питающего трансформатора.
  • Гармоничное перераспределение кривой электротока и напряжения на выходе – за счет передачи каждого полупериода сразу двумя диодами в мосте, выходной параметр получается куда более равномерным.

К недостаткам диодного моста следует отнести и большее падение напряжения, в сравнении с однополупериодной схемой или выпрямителем с отводом из средней точки. Это обусловлено тем, что ток протекает сразу черед два полупроводниковых элемента и встречает омическое сопротивление от каждого из них. Такой недостаток может оказывать существенное влияние в слаботочных цепях, где доли ампера могут решать значение сигналов, режимы работы агрегатов и т.д. В качестве решения могут применяться диодные мосты с диодами Шотки, у которых падение прямого напряжения относительно ниже.  

Практические опыты

Для начала возьмем простой диод.

Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220В делает 12В.

На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. Мультиметр показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на  так называемом “холостом ходу”.

3,3х5=16.5В – это максимальное значение напряжения.  А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть действующее значение напряжения. Осциллограф не врет, все ОК.

Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт  – это не шутки, поэтому я и понизил переменное напряжение.

Припаяем к одному концу  вторичной обмотки трансформатора наш диод.

Цепляемся снова щупами осциллографа

Смотрим на осциллограмму

А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.

Находим еще  три таких диода и спаиваем диодный мост.

Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.

С двух других  концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму

Вот, теперь порядок.

Практическое применение

На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения. Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому. Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.

Примеры схем с диодным мостом и их описание

Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере

Рис. 5. Схема зарядного устройства

Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.

Рис. 6. Схема карманного фонаря

На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост  VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.

Пример схемы сварочного агрегата

Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Домашняя баня
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: